4 research outputs found

    Loop-shaping for reset control systems -- A higher-order sinusoidal-input describing functions approach

    Full text link
    The ever-growing demands on speed and precision from the precision motion industry have pushed control requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a viable alternative since they can be easily integrated into the existing linear controller structure and designed using industry-preferred loop-shaping techniques. However, currently, loop-shaping is achieved using the describing function (DF) and performance analysed using linear control sensitivity functions not applicable for reset control systems, resulting in a significant deviation between expected and practical results. We overcome this major bottleneck to the wider adaptation of reset control with two contributions in this paper. First, we present the extension of frequency-domain tools for reset controllers in the form of higher-order sinusoidal-input describing functions (HOSIDFs) providing greater insight into their behaviour. Second, we propose a novel method which uses the DF and HOSIDFs of the open-loop reset control system for the estimation of the closed-loop sensitivity functions, establishing for the first time - the relation between open-loop and closed-loop behaviour of reset control systems in the frequency domain. The accuracy of the proposed solution is verified in both simulation and practice on a precision positioning stage and these results are further analysed to obtain insights into the tuning considerations for reset controllers

    Frequency analysis of reset systems containing a Clegg integrator: An introduction to higher order sinusoidal input describing functions

    No full text
    PID is the most popular controller in the industry. PID controllers are linear, and thus have fundamental limitations, such that certain performance criteria cannot be achieved. To overcome these limitations, nonlinear reset control can be used. Reset control can achieve less overshoot and a faster response time than linear controllers. However, the resetting mechanism has a jump function which causes jumps in the control input, which can result in limit cycles.Linear filters and controllers are designed in the industry using loop shaping, which is done in the frequency domain. In this study it is investigated how to analyse reset systems in the frequency domain. A reset system is nonlinear, so transfer functions needs to be approximated by describing functions. The sinusoidal input describing function considers only the first harmonic of the output and therefore does not capture all the dynamics of the element.The effects of the higher order harmonics are important in precision systems, since unwanted dynamics should not be excited nor should performance be affected. In this thesis, the higher order sinusoidal input describing functions (HOSIDF) are derived analytically. The HOSIDF shows the magnitude and phase response per harmonic, such that stability and performance analysis can be improved.Because the HOSIDF shows multiple responses, it is not trivial how to do loop shaping. The information from the HOSIDF is combined, creating a combined magnitude and combined phase response. It is seen that the combined magnitude looks promising, but the combined phase has jumps. It is concluded that the combined magnitude and combined phase are not mature enough to rely on during loop shaping and further work in this direction is required.Mechanical Engineering | Systems and Contro

    Corrigendum to “Loop-shaping for reset control systems: A higher-order sinusoidal-input describing functions approach” [Control Engineering Practice 111 (2021) 104808]

    No full text
    The authors regret for the typographical error in Eq. (13) and provide the corrected version below: The authors would like to apologize for any inconvenience caused.</p

    Loop-shaping for reset control systems: A higher-order sinusoidal-input describing functions approach

    No full text
    The ever-growing demands on speed and precision from the precision motion industry have pushed control requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a viable alternative since they can be easily integrated into the existing linear controller structure and designed using industry-preferred loop-shaping techniques. However, currently, loop-shaping is achieved using the describing function (DF) and performance analysed using linear control sensitivity functions not applicable for reset control systems, resulting in a significant deviation between expected and practical results. This major bottleneck to the wider adaptation of reset control is overcome in this paper with two important contributions. First, an extension of frequency-domain tools for reset controllers in the form of higher-order sinusoidal-input describing functions (HOSIDFs) is presented, providing greater insight into their behaviour. Second, a novel method that uses the DF and HOSIDFs of the open-loop reset control system for the estimation of the closed-loop sensitivity functions is proposed, establishing for the first time — the relation between open-loop and closed-loop behaviour of reset control systems in the frequency domain. The accuracy of the proposed solution is verified in both simulation and practice on a precision positioning stage and these results are further analysed to obtain insights into the tuning considerations for reset controllers.Mechatronic Systems Desig
    corecore